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Outline of the Course
1. Review of Probability
2. Stationary processes
3. Eigen Analysis, Singular Value Decomposition (SVD) and Principal

Component Analysis (PCA)
4. The Learning Problem
5. Training vs Testing
6. The Wiener Filter
7. Adaptive Optimization: Steepest descent and the LMS algorithm
8. Overfitting and Regularization
9. Logistic, Ridge and Lasso regression.

10. Neural Networks
11. Matrix Completion
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Problem Statement
Produce an estimate of a desired process statistically related to a set of
observations

filterx(n) d(n)
input y(n)

output

e(n) estimate
error

desired
response

+_

Historical Notes: The linear filtering problem was solved by
I Andrey Kolmogorov for discrete time – his 1938 paper “established the

basic theorems for smoothing and predicting stationary stochastic
processes”

I Norbert Wiener in 1941 for continuous time – not published until the
1949 paper Extrapolation, Interpolation, and Smoothing of Stationary
Time Series
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filterx(n) d(n)
input y(n)

output

e(n) estimate
error

desired
response

+_

System restrictions and considerations:
I Filter is linear
I Filter is discrete time
I Filter is finite impulse response (FIR)
I The process is WSS
I Statistical optimization is employed
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For the discrete time case

z-1x(n) …

e(n)

z-1 z-1

d(n)

∗
0w ∗

1w ∗
−1Mw

……
+-

)(ˆ nd

I The filter impulse response is finite and given by

hk =
{
w∗

k for k = 0,1, · · · ,M −1
0 otherwise

I The output d̂(n) is an estimate of the desired signal d(n)
I x(n) and d(n) are statistically related ⇒ d̂(n) and d(n) are statistically

related
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In convolution and vector form

d̂(n) =
M−1∑
k=0

w∗
kx(n−k) = wHx(n)

where

w = [w0,w1, · · · ,wM−1]T [filter coefficient vector]
x = [x(n),x(n−1), · · · ,x(n−M + 1)]T [observation vector]

The error can now be written as

e(n) = d(n)− d̂(n) = d(n)−wHx(n)

Question: Under what criteria should the error be minimized?
Selected Criteria: Mean squared-error (MSE)

J(w) = E{e(n)e∗(n)} (∗)

Result: The w that minimizes J(w) is the optimal (Wiener) filter
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Utilizing e(n) = d(n)−wHx(n) in (∗) and expanding,

J(w) = E{e(n)e∗(n)}
= E{(d(n)−wHx(n))(d∗(n)−xH(n)w)}
= E{|d(n)|2−d(n)xH(n)w−wHx(n)d∗(n)

+wHx(n)xH(n)w}
= E{|d(n)|2}−E{d(n)xH(n)}w−wHE{x(n)d∗(n)}

+wHE{x(n)xH(n)}w (∗∗)

Let R = E{x(n)xH(n)} [autocorrelation of x(n)]
p = E{x(n)d∗(n)} [cross correlation between x(n) and d(n)]

Then (∗∗) can be compactly expressed as

J(w) = σ2
d−pHw−wHp + wHRw

where we have assumed x(n) & d(n) are zero mean, WSS
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The MSE criteria as a function of the filter weight vector w

J(w) = σ2
d−pHw−wHp + wHRw

Observation: The error is a quadratic function of w

Consequences: The error is an M–dimensional bowl–shaped function of w
with a unique minimum
Result: The optimal weight vector, w0, is determined by differentiating J(w)
and setting the result to zero

∇wJ(w)|w=w0 = 0

I A closed form solution exists
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Example
Consider a two dimensional case, i.e., a M = 2 tap filter. Plot the error
surface and error contours.

Error Surface Error Contours
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Aside (Matrix Differentiation): For complex data,

wk = ak + jbk, k = 0,1, · · · ,M −1

the gradient, with respect to wk, is

∇k(J) = ∂J

∂ak
+ j

∂J

∂bk
, k = 0,1, · · · ,M −1

The complete gradient is thus given by

∇w(J) =


∇0(J)
∇1(J)

...
∇M−1(J)

 =



∂J
∂a0

+ j ∂J
∂b0

∂J
∂a1

+ j ∂J
∂b1...

∂J
∂aM−1

+ j ∂J
∂bM−1
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Example
Let c and w be M ×1 complex vectors.
For g = cHw, find ∇w(g)
Note

g = cHw =
M−1∑
k=0

c∗
kwk =

M−1∑
k=0

c∗
k(ak + jbk)

Thus

∇k(g) = ∂g

∂ak
+ j

∂g

∂bk
= c∗

k + j(jc∗
k) = 0, k = 0,1, · · · ,M −1

Result: For g = cHw

∇w(g) =


∇0(g)
∇1(g)

...
∇M-1(g)

 =


0
0
...
0

 = 0
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Example
Now suppose g = wHc.
Find ∇w(g)
In this case,

g = wHc =
M−1∑
k=0

w∗
kck =

M−1∑
k=0

ck(ak− jbk)

and

∇k(g) = ∂g

∂ak
+ j

∂g

∂bk
= ck + j(−jck) = 2ck, k = 0,1, · · · ,M −1

Result: For g = wHc

∇w(g) =


∇0(g)
∇1(g)

...
∇M-1(g)

 =


2c0
2c1
...

2cM−1

 = 2c
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Example
Lastly, suppose g = wHQw.
Find ∇w(g)
In this case,

g =
M−1∑
i=0

M−1∑
j=0

w∗
iwjqi,j

=
M−1∑
i=0

M−1∑
j=0

(ai− jbi)(aj + jbj)qi,j

⇒∇k(g) = ∂g

∂ak
+ j

∂g

∂bk

= 2
M−1∑
j=0

(aj + jbj)qk,j + 0

= 2
M−1∑
j=0

wjqk,j
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Result: For g = wHQw

∇w(g) =


∇0(g)
∇1(g)

...
∇M-1(g)

 = 2



M−1∑
i=0

q0,iwi

M−1∑
i=0

q1,iwi

...
M-1∑
i=0

qM−1,iwi


= 2Qw

I Observation: Differentiation result depends on matrix ordering
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Returning to the MSE performance criteria

J(w) = σ2
d−pHw−wHp + wHRw

Approach: Minimize error by differentiating with respect to w and set result
to 0

∇w(J) = 0−0−2p + 2Rw
= 0

⇒Rw0 = p [normal equation]

Result: The Wiener filter coefficients are defined by

w0 = R−1p

Question: Does R−1 always exist? Recall R is positive semi-definite, and
usually positive definite
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Orthogonality Principle
Consider again the normal equation that defines the optimal solution

Rw0 = p
⇒ E{x(n)xH(n)}w0 = E{x(n)d∗(n)}

Rearranging

E{x(n)d∗(n)}−E{x(n)xH(n)}w0 = 0
E{x(n)[d∗(n)−xH(n)w0]} = 0

E{x(n)e∗
0(n)} = 0

Note: e∗
0(n) is the error when the optimal weights are used, i.e.,

e∗
0(n) = d∗(n)−xH(n)w0
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Thus

E{x(n)e∗
0(n)}= E


x(n)e∗

0(n)
x(n−1)e∗

0(n)
...

x(n−M + 1)e∗
0(n)

 =


0
0
...
0


Orthogonality Principle
A necessary and sufficient condition for a filter to be optimal is that the
estimate error, e∗(n), be orthogonal to each input sample in x(n)
Interpretation: The observations samples and error are orthogonal and contain
no mutual “information”
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Objective: Determine the minimum MSE
Approach: Use the optimal weights w0 = R−1p in the MSE expression

J(w) = σ2
d−pHw−wHp + wHRw

⇒ Jmin = σ2
d−pHw0−wH

0 p + wH
0 R(R−1p)

= σ2
d−pHw0−wH

0 p + wH
0 p

= σ2
d−pHw0

Result:
Jmin = σ2

d−pHR−1p

where the substitution w0 = R−1p has been employed
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Objective: Consider the excess MSE introduced by using a weighted vector
that is not optimal.

J(w)−Jmin = (σ2
d−pHw−wHp+wHRw)−(σ2

d−pHw0−wH
0 p+wH

0 Rw0)

Using the fact that
p = Rw0 and pH = wH

0 R

yields

J(w)−Jmin = −pHw−wHp + wHRw + pHw0 + wH
0 p−wH

0 Rw0

= −wH
0 Rw−wHRw0 + wHRw + wH

0 Rw0

+wH
0 Rw0−wH

0 Rw0

= −wH
0 Rw−wHRw0 + wHRw + wH

0 Rw0

= (w−w0)HR(w−w0)
⇒ J(w) = Jmin + (w−w0)HR(w−w0)
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Finally, using the eigenvalue and vector representation R = QΩΩΩQH

J(w) = Jmin + (w−w0)HQΩΩΩQH(w−w0)
or defining the eigenvector transformed difference

v = QH(w−w0) (∗)
⇒ J(w) = Jmin + vHΩΩΩv

= Jmin +
M∑

k=1
λkvkv

∗
k

Result:
J(w) = Jmin +

M∑
k=1

λk|vk|2

Note: (∗) shows that vk is the difference (w−w0) projected onto eigenvector
qk
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Example: Binary Phase-Shift Keying Symbol Estimate

Let x be a signal that is either −1 or 1 with probability 1/2.
Collect two noisy measurements of the same value of x:

y(0) = x+v(0);

y(1) = x+v(1);
where v(0) and v(1) are independent zero-mean Gaussian with σ2

v = 1.
The optimal linear estimator of x given y = [y(0),y(1)]T is

x̂= wHy.
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The autocorrelation matrix of y is

Ry =
[

E[y(0)2] E[y(0)y∗(1)]
E[y(1)y∗(0)] E[y(1)2]

]
.

Notice that x, v(0) and v(1) are independent, we get

E[y(0)2] = E[x2] +E[v(0)2] = 1 + 1 = 2;

E[y(1)2] = E[x2] +E[v(1)2] = 1 + 1 = 2;
E[y(0)y∗(1)] = E[(x+v(0))(x+v(1))∗] = E[x2] = 1;
E[y(1)y∗(0)] = E[(x+v(1))(x+v(0))∗] = E[x2] = 1.

So we have
Ry =

[
2 1
1 2

]
.
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The cross-correlation vector of the desired value x and the measurements y is

P =
[
E[xy∗(0)] E[xy∗(1)]

]H
,

where
E[xy∗(0)] = E[x(x+v(0))] = E[x2] = 1;
E[xy∗(1)] = E[x(x+v(1))] = E[x2] = 1.

So we have
P =

[
1 1

]H
,

The weights of the estimator are:

w = R−1
y P =

[
2 1
1 2

]−1 [
1
1

]
=

[
1/3
1/3

]
.

That is
x̂= 1

3(y(0) +y(1)).
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